Graphs in -1 colors Learning to Live with Stanley's Acyclicity Theorem

Oscar Coppola, Mikey Reilly

K&G June 25, 2021

Oscar Coppola, Mikey Reilly

Graphs in -1 colors

K&G June 25, 2021

э

1/25

- 4 回 ト 4 三 ト 4 三 ト

Recall that a coloring of a graph G is a function κ which assigns every vertex in G a natural number. A coloring is proper if any two vertices which are connected by an edge have distinct colors.

< 日 > < 同 > < 回 > < 回 > .

Recall that a coloring of a graph G is a function κ which assigns every vertex in G a natural number. A coloring is proper if any two vertices which are connected by an edge have distinct colors.

 $\chi_G(\lambda)$ gives the number of proper colorings of G in λ colors.

イロト イヨト イヨト ・

Recall that a coloring of a graph G is a function κ which assigns every vertex in G a natural number. A coloring is proper if any two vertices which are connected by an edge have distinct colors.

 $\chi_G(\lambda)$ gives the number of proper colorings of G in λ colors.

Theorem (Stanley's Acyclicity Theorem)

For any graph G with n vertices, the number of acyclic orientations of G is $(-1)^n \chi_G(-1)$, where χ_G is the chromatic polynomial of G.

イロト 不得 トイヨト イヨト 二日

Color by Numbers

To say that κ is a coloring of G in λ colors means that κ is a function $\kappa : \{ \text{Vertices of } G \} \rightarrow \{1, 2, \dots, \lambda \}$

э

Color by Numbers

To say that κ is a coloring of G in λ colors means that κ is a function $\kappa : \{ \text{Vertices of } G \} \rightarrow \{1, 2, \dots, \lambda \}$

< 日 > < 同 > < 回 > < 回 > .

Color by Numbers

To say that κ is a coloring of G in λ colors means that κ is a function $\kappa : \{ \text{Vertices of } G \} \rightarrow \{1, 2, \dots, \lambda \}$

Note that κ is not a proper coloring since there are two vertices which are connected by an edge and have the same color.

Oscar	Сорро	la, Mi	key	Reilly

3 / 25

イロト 不得下 イヨト イヨト

Coloring by Numbers (cont.)

G with proper coloring κ'

э

イロト イポト イヨト イヨト

Coloring by Numbers (cont.)

G with proper coloring κ'

The chromatic polynomial for G is $\chi_G(\lambda) = \lambda^5 - 6\lambda^4 + 13\lambda^3 - 12\lambda^2 + 4\lambda$.

So for example, there are:

0 ways to properly color G in 2 colors 12 ways to properly color G in 3 colors 144 ways to properly color G in 4 colors 720 ways to properly color G in 5 colors

4 / 25

What's an Acyclicity?

An orientation of a graph assigns a direction to each edge. The orientation is acyclic if it forms no cycles.

As it turns out, there is an interesting relation between graph colorings and orientations.

Oscar	Сорро	la. M	likev	Reilly

A Connection Between Colors and Directions

Given a proper coloring of your favorite graph G, we can create a unique orientation of G which will contain no cycles.

6/25

< 口 > < 同 > < 三 > < 三 > 、

A Connection Between Colors and Directions

Given a proper coloring of your favorite graph G, we can create a unique orientation of G which will contain no cycles.

Specifically, each edge in G will point to the vertex whose coloring has a lower value.

6/25

A Connection Between Colors and Directions

Given a proper coloring of your favorite graph G, we can create a unique orientation of G which will contain no cycles.

Specifically, each edge in G will point to the vertex whose coloring has a lower value.

Any orientation created this way must be acyclic: the colors strictly decrease along each edge, so it would be impossible for a directed path to begin and end at the same vertex.

A Connection Between Colors and Directions (cont.)

So, every proper λ -coloring of a graph *G* can be associated to an acyclic orientation of *G*. However, multiple proper colorings might be associated to the same orientation.

7 / 25

A Connection Between Colors and Directions (cont.)

So, every proper λ -coloring of a graph *G* can be associated to an acyclic orientation of *G*. However, multiple proper colorings might be associated to the same orientation.

Another way of phrasing this remark is that

$$\chi_{\mathcal{G}}(\lambda) = \#\{(\kappa, \sigma) : \sigma \text{ is acyclic and } v_1 \stackrel{\sigma}{\to} v_2 \implies \kappa(v_1) > \kappa(v_2)\}$$

Oscar Coppola, Mikey Reilly

K&G June 25, 2021

What's Upsilon?

Let's consider a similar function, $v_{\rm G}$, defined as

$$\upsilon_{\mathcal{G}}(\lambda) = \#\{(\kappa, \sigma) : \sigma \text{ is acyclic and } v_1 \xrightarrow{\sigma} v_2 \implies \kappa(v_1) \ge \kappa(v_2)\}.$$

э

イロト イボト イヨト イヨト

What's Upsilon?

Let's consider a similar function, v_{G} , defined as

$$\upsilon_{\mathsf{G}}(\lambda) = \#\{(\kappa, \sigma) : \sigma \text{ is acyclic and } \mathsf{v}_1 \xrightarrow{\sigma} \mathsf{v}_2 \implies \kappa(\mathsf{v}_1) \ge \kappa(\mathsf{v}_2)\}.$$

We call such pairs of colorings and orientations *compatible pairs*. Note that κ is no longer forced to be a proper coloring! In fact, κ could color the entire graph with the same color.

< ロ > < 同 > < 回 > < 回 > < 回 > <

What's Upsilon?

Let's consider a similar function, v_G , defined as

$$\upsilon_{\mathsf{G}}(\lambda) = \#\{(\kappa, \sigma) : \sigma \text{ is acyclic and } \mathsf{v}_1 \xrightarrow{\sigma} \mathsf{v}_2 \implies \kappa(\mathsf{v}_1) \ge \kappa(\mathsf{v}_2)\}.$$

We call such pairs of colorings and orientations *compatible pairs*. Note that κ is no longer forced to be a proper coloring! In fact, κ could color the entire graph with the same color.

Specifically, we can see that $v_G(1)$ counts the number of acyclic orientations of G.

Our goal is to prove that $(-1)^n v_G(\lambda) = \chi_G(-\lambda)$, where *n* is the number of vertices in G.

8 / 25

Contracting and Deleting

Recall that χ is uniquely defined by the following conditions:

(1)
$$\chi_{\circ}(\lambda) = \lambda$$

(2) $\chi_{G\sqcup H}(\lambda) = \chi_{G}(\lambda) \cdot \chi_{H}(\lambda)$
(3) $\chi_{G}(\lambda) = \chi_{G-e}(\lambda) - \chi_{G/e}(\lambda)$

э

Contracting and Deleting

Recall that χ is uniquely defined by the following conditions:

(1)
$$\chi_{\circ}(\lambda) = \lambda$$

(2) $\chi_{G\sqcup H}(\lambda) = \chi_{G}(\lambda) \cdot \chi_{H}(\lambda)$
(3) $\chi_{G}(\lambda) = \chi_{G-e}(\lambda) - \chi_{G/e}(\lambda)$

We will show that $\boldsymbol{\upsilon}$ has the following properties:

(1')
$$v_{\circ}(\lambda) = \lambda$$

(2') $v_{G\sqcup H}(\lambda) = v_G(\lambda) \cdot v_H(\lambda)$
(3') $v_G(\lambda) = v_{G-e}(\lambda) + v_{G/e}(\lambda)$

A B < A B </p>

 υ satisfies (1') and (2') for the same reason that χ does.

(1')
$$v_{\circ}(\lambda) = \lambda$$

(2') $v_{G \sqcup H}(\lambda) = v_G(\lambda) \cdot v_H(\lambda)$

イロト 不得 トイヨト イヨト 二日

 υ satisfies (1') and (2') for the same reason that χ does.

(1')
$$v_{\circ}(\lambda) = \lambda$$

(2') $v_{G \sqcup H}(\lambda) = v_G(\lambda) \cdot v_H(\lambda)$

First, if there are λ colors available, then there are λ ways to color a single vertex. For each coloring, there is only one way to "orient" a single vertex with no edges, so the total number of compatible pairs is λ .

イロト イヨト イヨト ・

 υ satisfies (1') and (2') for the same reason that χ does.

(1')
$$v_{\circ}(\lambda) = \lambda$$

(2') $v_{G \sqcup H}(\lambda) = v_G(\lambda) \cdot v_H(\lambda)$

First, if there are λ colors available, then there are λ ways to color a single vertex. For each coloring, there is only one way to "orient" a single vertex with no edges, so the total number of compatible pairs is λ .

Second, if G and H are disjoint graphs, then any compatible pair for G put together with a compatible pair for H will make a compatible pair for $G \sqcup H$. Additionally, a compatible pair for $G \sqcup H$ will remain a compatible pair when restricted to either G or H. So, $v_{G \sqcup H}(\lambda) = v_G(\lambda) \cdot v_H(\lambda)$.

Now to show that $v_{G}(\lambda) = v_{G-e}(\lambda) + v_{G/e}(\lambda)$.

イロト 不得 トイヨト イヨト 二日

Now to show that $v_{G}(\lambda) = v_{G-e}(\lambda) + v_{G/e}(\lambda)$.

Pick your favorite edge e in G. Consider σ^{-e} to be the orientation on G - e that agrees with σ on all edges other than e (it has no direction on e since e is not an edge in G - e.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now to show that $v_{\mathcal{G}}(\lambda) = v_{\mathcal{G}-e}(\lambda) + v_{\mathcal{G}/e}(\lambda)$.

Pick your favorite edge e in G. Consider σ^{-e} to be the orientation on G - e that agrees with σ on all edges other than e (it has no direction on e since e is not an edge in G - e.)

11/25

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Now to show that $v_{\mathcal{G}}(\lambda) = v_{\mathcal{G}-e}(\lambda) + v_{\mathcal{G}/e}(\lambda)$.

Pick your favorite edge e in G. Consider σ^{-e} to be the orientation on G - e that agrees with σ on all edges other than e (it has no direction on e since e is not an edge in G - e.)

We will first show that that the mapping $(\kappa, \sigma) \mapsto (\kappa, \sigma^{-e})$ between compatible pairs for G and compatible pairs for G - e is surjective for any choice of edge e.

Oscar Coppola, Mikey Reilly

K&G June 25, 2021

11/25

Proving Surjectivity

Lemma

For any compatible pair (κ, ω) for G - e, ω can be extended to some ω' on G such that (κ, ω') is a compatible pair for G.

イロト 不得 トイラト イラト 一日

Proving Surjectivity

Lemma

For any compatible pair (κ, ω) for G - e, ω can be extended to some ω' on G such that (κ, ω') is a compatible pair for G.

If u and v are the endpoints of e with $\kappa(u) \neq \kappa(v)$, then defining ω' to point toward the vertex with the smaller color will result in (κ, ω') being a compatible pair.

If $\kappa(u) = \kappa(v)$, then it is impossible for both choices of direction for *e* to result in a cycle, so we may pick whichever one makes ω' acyclic.

< 日 > < 同 > < 回 > < 回 > .

If $\kappa(u) = \kappa(v)$, then it is impossible for both choices of direction for *e* to result in a cycle, so we may pick whichever one makes ω' acyclic.

13/25

Surjectivity, Subjectively (cont.)

How do we know that one of them will be acyclic?

э

< □ > < @ >

Surjectivity, Subjectively (cont.)

How do we know that one of them will be acyclic?

The upshot of all of this is that the mapping $(\kappa, \sigma) \mapsto (\kappa, \sigma^{-e})$ between compatible pairs for G and compatible pairs for G - e is surjective for any choice of edge e.

14 / 25

If this mapping is a bijection, then we are done.

So is this map injective?

3

イロト イポト イヨト イヨト

If this mapping is a bijection, then we are done.

So is this map injective? No.

3

イロト イポト イヨト イヨト

If this mapping is a bijection, then we are done.

So is this map injective? No.

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

If this mapping is a bijection, then we are done.

So is this map injective? No.

э

15 / 25

< □ > < @ >

Injectivity, Objectively (cont.)

Just how non-injective is this map?

э

(日)

Injectivity, Objectively (cont.)

Just how non-injective is this map?

For two compatible pairs for G to be mapped to the same compatible pair for G - e, they must agree on every edge except for e. If e can point in either direction, then it must be that $\kappa(u) = \kappa(v)$ since $\kappa(u) \ge \kappa(v)$ and $\kappa(u) \le \kappa(v)$ (where u and v are the endpoints of e).

16 / 25

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Injectivity, Objectively (cont.)

Just how non-injective is this map?

For two compatible pairs for G to be mapped to the same compatible pair for G - e, they must agree on every edge except for e. If e can point in either direction, then it must be that $\kappa(u) = \kappa(v)$ since $\kappa(u) \ge \kappa(v)$ and $\kappa(u) \le \kappa(v)$ (where u and v are the endpoints of e).

However, this means that a compatible pair is induced on G/e.

Graphs in -1 colors

Contractually Obligated Injectivity

If $\kappa(u) = \kappa(v)$, then we can easily define $\kappa^{/e}$ and $\sigma^{/e}$ on G/e. We demand that $\kappa^{/e}$ and $\sigma^{/e}$ agree with κ and σ wherever possible and $\kappa^{/e}(w) = \kappa(u) = \kappa(v)$ where w is the vertex in G/e created by fusing u and v together.

17 / 25

Contractually Obligated Injectivity

If $\kappa(u) = \kappa(v)$, then we can easily define $\kappa^{/e}$ and $\sigma^{/e}$ on G/e. We demand that $\kappa^{/e}$ and $\sigma^{/e}$ agree with κ and σ wherever possible and $\kappa^{/e}(w) = \kappa(u) = \kappa(v)$ where w is the vertex in G/e created by fusing u and v together.

Therefore, any compatible pair for G/e can be extended to not just one compatible pair for G, but in fact two compatible pairs for G.

Oscar Coppola, Mikey Reilly

Graphs in -1 colors

K&G June 25, 2021

Considering all of the compatible pairs for G (which by definition is $v_G(\lambda)$), we've seen that they can all be produced by extending the $v_{G-e}(\lambda)$ compatible pairs of G - e, and that $v_{G/e}(\lambda)$ of those pairs admit either direction of e in the extension.

Considering all of the compatible pairs for G (which by definition is $v_G(\lambda)$), we've seen that they can all be produced by extending the $v_{G-e}(\lambda)$ compatible pairs of G - e, and that $v_{G/e}(\lambda)$ of those pairs admit either direction of e in the extension.

So we may consider our map from before that maps compatible pairs of G to compatible pairs for G - e, $(\kappa, \sigma) \mapsto (\kappa, \sigma^{-e})$. We have found that there are two pairs which are mapped to the same thing under this map for each compatible pair for G/e (of which there are $v_{G/e}(\lambda)$) and moreover, these are the only pairs which are mapped to the same thing.

18 / 25

イロト 不得下 イヨト イヨト 二日

Putting it All Together (cont.)

So, we can put some of the compatible pairs for G in 1-to-1 correspondence with the compatible pairs for G - e (of which there are $v_{G-e}(\lambda)$) and have $v_{G/e}(\lambda)$ compatible pairs left over.

イロト 不得 トイラト イラト 一日

Putting it All Together (cont.)

So, we can put some of the compatible pairs for G in 1-to-1 correspondence with the compatible pairs for G - e (of which there are $v_{G-e}(\lambda)$) and have $v_{G/e}(\lambda)$ compatible pairs left over.

19/25

Putting it All Together (cont.)

So, we can put some of the compatible pairs for G in 1-to-1 correspondence with the compatible pairs for G - e (of which there are $v_{G-e}(\lambda)$) and have $v_{G/e}(\lambda)$ compatible pairs left over.

In other words, we have that $v_{\mathcal{G}}(\lambda) = v_{\mathcal{G}-e}(\lambda) + v_{\mathcal{G}/e}(\lambda)$.

Oscar Coppola, Mikey Reilly

19/25

A Negative Number of Colors

Using this information, we can show that $(-1)^n \upsilon_G(\lambda) = \chi_G(-\lambda)$.

A Negative Number of Colors

Using this information, we can show that $(-1)^n v_{\mathcal{G}}(\lambda) = \chi_{\mathcal{G}}(-\lambda)$.

We have that

$$(-1)^1 \upsilon_{\circ}(\lambda) = -\lambda \tag{1'}$$

$$(-1)^{n+m}\upsilon_{G\sqcup H}(\lambda) = (-1)^n \upsilon_G(\lambda) \cdot (-1)^m \upsilon_H(\lambda)$$
(2')

A Negative Number of Colors

Using this information, we can show that $(-1)^n v_{\mathcal{G}}(\lambda) = \chi_{\mathcal{G}}(-\lambda)$.

We have that

$$(-1)^1 \upsilon_{\circ}(\lambda) = -\lambda \tag{1'}$$

$$(-1)^{n+m}\upsilon_{G\sqcup H}(\lambda) = (-1)^n \upsilon_G(\lambda) \cdot (-1)^m \upsilon_H(\lambda)$$
(2')

And lastly,

$$(-1)^{n} \upsilon_{G}(\lambda) = (-1)^{n} \upsilon_{G-e}(\lambda) + (-1)^{n} \upsilon_{G/e}(\lambda)$$

= $(-1)^{n} \upsilon_{G-e}(\lambda) - (-1)^{n-1} \upsilon_{G/e}(\lambda)$ (3')

Oscar Coppola, Mikey Reilly

A Negative Number of Colors (cont.)

We know that $\chi_G(-\lambda)$ is uniquely defined by the following properties

(1)
$$\chi_{\circ}(-\lambda) = -\lambda.$$

(2) $\chi_{G\sqcup H}(-\lambda) = \chi_{G}(-\lambda) \cdot \chi_{H}(-\lambda).$
(3) $\chi_{G}(-\lambda) = \chi_{G-e}(-\lambda) - \chi_{G/e}(-\lambda).$

We have shown that $(-1)^n v_G(\lambda)$ satisfies each of these properties and so we have that

$$(-1)^n v_{\mathcal{G}}(\lambda) = \chi_{\mathcal{G}}(-\lambda)$$

21 / 25

イロト 不得 トイヨト イヨト 二日

Using this formula, we can note that by plugging in $\lambda=1$ we arrive at

$$(-1)^n v_G(1) = \chi_G(-1)$$

 $v_G(1)$ is the number of acyclic orientations of G since there is only one way to color a graph in one color.

3

イロト 不得 トイヨト イヨト

Using this formula, we can note that by plugging in $\lambda=1$ we arrive at

$$(-1)^n v_G(1) = \chi_G(-1)$$

 $v_G(1)$ is the number of acyclic orientations of G since there is only one way to color a graph in one color.

And so in conclusion:

3

イロト 不得 トイヨト イヨト

Using this formula, we can note that by plugging in $\lambda=1$ we arrive at

$$(-1)^n v_G(1) = \chi_G(-1)$$

 $v_G(1)$ is the number of acyclic orientations of G since there is only one way to color a graph in one color.

And so in conclusion:

The number of acyclic orientations of $G = v_G(1) = (-1)^n \chi(-1)$

22 / 25

イロト イポト イヨト イヨト 二日

Example

Consider our favorite graph G:

It has 6 edges and so it has $2^6 = 64$ orientations. There are only two paths that can be cycles. If one of the two paths is a cycle, then there are $2^3 = 8$ ways to orient the other half. There are two possible cycles and each cycle can be directed in one of two ways and so (taking into account the 4 ways in which there can be two cycles) we have that there are $8 \cdot 2 \cdot 2 - 4 = 28$ orientations of *G* which are cyclic.

Example

Consider our favorite graph G:

It has 6 edges and so it has $2^6 = 64$ orientations. There are only two paths that can be cycles. If one of the two paths is a cycle, then there are $2^3 = 8$ ways to orient the other half. There are two possible cycles and each cycle can be directed in one of two ways and so (taking into account the 4 ways in which there can be two cycles) we have that there are $8 \cdot 2 \cdot 2 - 4 = 28$ orientations of *G* which are cyclic.

Therefore G has 64 - 28 = 36 acyclic orientations.

Graphs in -1 colors

Example (cont.)

Recall that the chromatic polynomial for G is $\chi_G(\lambda) = \lambda^5 - 6\lambda^4 + 13\lambda^3 - 12\lambda^2 + 4\lambda$.

G has 5 vertices and so Stanley's Acyclicity Theorem tells us that *G* has $(-1)^5\chi_G(-1) = -(-1-6-13-12-4) = 36$ acyclic orientations.

Oscar Coppola, Mikey Reilly

24 / 25

< 口 > < 同 > < 回 > < 回 > < 回 > <

Stanley, Richard P. "Acyclic Orientations of Graphs." Discrete Mathematics, vol. 5, no. 2, 1973, pp. 171–178., doi:10.1016/0012-365x(73)90108-8.

25 / 25

イロト 不得 トイヨト イヨト 二日