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The Main Result

Recall that a coloring of a graph G is a function κ which assigns every
vertex in G a natural number. A coloring is proper if any two vertices
which are connected by an edge have distinct colors.

χG (λ) gives the number of proper colorings of G in λ colors.

Theorem (Stanley’s Acyclicity Theorem)

For any graph G with n vertices, the number of acyclic orientations of G is
(−1)nχG (−1), where χG is the chromatic polynomial of G .
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Color by Numbers

To say that κ is a coloring of G in λ colors means that κ is a function
κ : {Vertices of G} → {1, 2, . . . , λ}

G with no coloring G with coloring κ

3

3

5

7

2

Note that κ is not a proper coloring since there are two vertices which are
connected by an edge and have the same color.
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Coloring by Numbers (cont.)

G with proper coloring κ′

1

2

3

2

5

The chromatic polynomial for G is χG (λ) = λ5 − 6λ4 + 13λ3 − 12λ2 + 4λ.

So for example, there are:

0 ways to properly color G in 2 colors

12 ways to properly color G in 3 colors

144 ways to properly color G in 4 colors

720 ways to properly color G in 5 colors
...
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What’s an Acyclicity?

An orientation of a graph assigns a direction to each edge. The orientation
is acyclic if it forms no cycles.

G with cyclic orientation σ G with acyclic orientation σ′

As it turns out, there is an interesting relation between graph colorings
and orientations.
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A Connection Between Colors and Directions

Given a proper coloring of your favorite graph G , we can create a unique
orientation of G which will contain no cycles.

Specifically, each edge in G will point to the vertex whose coloring has a
lower value.

9 2

Any orientation created this way must be acyclic: the colors strictly
decrease along each edge, so it would be impossible for a directed path to
begin and end at the same vertex.

9

7

4

3

2
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A Connection Between Colors and Directions (cont.)

So, every proper λ-coloring of a graph G can be associated to an acyclic
orientation of G . However, multiple proper colorings might be associated
to the same orientation.

9

7

4

3

2

5

4

3

2

1

Another way of phrasing this remark is that

χG (λ) = #{(κ, σ) : σ is acyclic and v1
σ→ v2 =⇒ κ(v1) > κ(v2)}
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What’s Upsilon?

Let’s consider a similar function, υG , defined as

υG (λ) = #{(κ, σ) : σ is acyclic and v1
σ→ v2 =⇒ κ(v1) ≥ κ(v2)}.

We call such pairs of colorings and orientations compatible pairs. Note
that κ is no longer forced to be a proper coloring! In fact, κ could color
the entire graph with the same color.

Specifically, we can see that υG (1) counts the number of acyclic
orientations of G .

Our goal is to prove that (−1)nυG (λ) = χG (−λ), where n is the number
of vertices in G .
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Contracting and Deleting

Recall that χ is uniquely defined by the following conditions:

(1) χ◦(λ) = λ

(2) χGtH(λ) = χG (λ) · χH(λ)

(3) χG (λ) = χG−e(λ)− χG/e(λ)

We will show that υ has the following properties:

(1’) υ◦(λ) = λ

(2’) υGtH(λ) = υG (λ) · υH(λ)

(3’) υG (λ) = υG−e(λ) + υG/e(λ)

Oscar Coppola, Mikey Reilly Graphs in -1 colors K&G June 25, 2021 9 / 25



Contracting and Deleting

Recall that χ is uniquely defined by the following conditions:

(1) χ◦(λ) = λ

(2) χGtH(λ) = χG (λ) · χH(λ)

(3) χG (λ) = χG−e(λ)− χG/e(λ)

We will show that υ has the following properties:

(1’) υ◦(λ) = λ

(2’) υGtH(λ) = υG (λ) · υH(λ)

(3’) υG (λ) = υG−e(λ) + υG/e(λ)

Oscar Coppola, Mikey Reilly Graphs in -1 colors K&G June 25, 2021 9 / 25



Contracting and Deleting (cont.)

υ satisfies (1’) and (2’) for the same reason that χ does.

(1’) υ◦(λ) = λ

(2’) υGtH(λ) = υG (λ) · υH(λ)

First, if there are λ colors available, then there are λ ways to color a single
vertex. For each coloring, there is only one way to “orient” a single vertex
with no edges, so the total number of compatible pairs is λ.

Second, if G and H are disjoint graphs, then any compatible pair for G
put together with a compatible pair for H will make a compatible pair for
G t H. Additionally, a compatible pair for G t H will remain a compatible
pair when restricted to either G or H. So, υGtH(λ) = υG (λ) · υH(λ).

Oscar Coppola, Mikey Reilly Graphs in -1 colors K&G June 25, 2021 10 / 25



Contracting and Deleting (cont.)

υ satisfies (1’) and (2’) for the same reason that χ does.

(1’) υ◦(λ) = λ

(2’) υGtH(λ) = υG (λ) · υH(λ)

First, if there are λ colors available, then there are λ ways to color a single
vertex. For each coloring, there is only one way to “orient” a single vertex
with no edges, so the total number of compatible pairs is λ.

Second, if G and H are disjoint graphs, then any compatible pair for G
put together with a compatible pair for H will make a compatible pair for
G t H. Additionally, a compatible pair for G t H will remain a compatible
pair when restricted to either G or H. So, υGtH(λ) = υG (λ) · υH(λ).

Oscar Coppola, Mikey Reilly Graphs in -1 colors K&G June 25, 2021 10 / 25



Contracting and Deleting (cont.)

υ satisfies (1’) and (2’) for the same reason that χ does.

(1’) υ◦(λ) = λ

(2’) υGtH(λ) = υG (λ) · υH(λ)

First, if there are λ colors available, then there are λ ways to color a single
vertex. For each coloring, there is only one way to “orient” a single vertex
with no edges, so the total number of compatible pairs is λ.

Second, if G and H are disjoint graphs, then any compatible pair for G
put together with a compatible pair for H will make a compatible pair for
G t H. Additionally, a compatible pair for G t H will remain a compatible
pair when restricted to either G or H. So, υGtH(λ) = υG (λ) · υH(λ).

Oscar Coppola, Mikey Reilly Graphs in -1 colors K&G June 25, 2021 10 / 25



Contracting and Deleting (cont.)

Now to show that υG (λ) = υG−e(λ) + υG/e(λ).

Pick your favorite edge e in G . Consider σ−e to be the orientation on
G − e that agrees with σ on all edges other than e (it has no direction on
e since e is not an edge in G − e.)

G with orientation σ

e

G − e with orientation σ−e

We will first show that that the mapping (κ, σ) 7→ (κ, σ−e) between
compatible pairs for G and compatible pairs for G − e is surjective for any
choice of edge e.
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Proving Surjectivity

Lemma

For any compatible pair (κ, ω) for G − e, ω can be extended to some ω′

on G such that (κ, ω′) is a compatible pair for G.

If u and v are the endpoints of e with κ(u) 6= κ(v), then defining ω′ to
point toward the vertex with the smaller color will result in (κ, ω′) being a
compatible pair.

(κ, ω)

7

7

1

3

4

(κ, ω′)

7

7

1

3

4
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Surjectivity, Subjectively

If κ(u) = κ(v), then it is impossible for both choices of direction for e to
result in a cycle, so we may pick whichever one makes ω′ acyclic.

3

3

5

3

3

5
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Surjectivity, Subjectively (cont.)

How do we know that one of them will be acyclic?

3

· · ·

3

· · ·

The upshot of all of this is that the mapping (κ, σ) 7→ (κ, σ−e) between
compatible pairs for G and compatible pairs for G − e is surjective for any
choice of edge e.
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Injectivity, Objectively

If this mapping is a bijection, then we are done.

So is this map injective?

No.

1 1 1 1

1 1
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Injectivity, Objectively (cont.)

Just how non-injective is this map?

For two compatible pairs for G to be mapped to the same compatible pair
for G − e, they must agree on every edge except for e. If e can point in
either direction, then it must be that κ(u) = κ(v) since κ(u) ≥ κ(v) and
κ(u) ≤ κ(v) (where u and v are the endpoints of e).

e

7

7

4

e

7

7

4

However, this means that a compatible pair is induced on G/e.
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Contractually Obligated Injectivity

If κ(u) = κ(v), then we can easily define κ/e and σ/e on G/e. We
demand that κ/e and σ/e agree with κ and σ wherever possible and
κ/e(w) = κ(u) = κ(v) where w is the vertex in G/e created by fusing u
and v together.

(κ, σ)

e
9

6

2

2

1

(κ/e , σ/e)

9

6

2

1

Therefore, any compatible pair for G/e can be extended to not just one
compatible pair for G , but in fact two compatible pairs for G .
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Putting it All Together

Considering all of the compatible pairs for G (which by definition is
υG (λ)), we’ve seen that they can all be produced by extending the
υG−e(λ) compatible pairs of G − e, and that υG/e(λ) of those pairs admit
either direction of e in the extension.

So we may consider our map from before that maps compatible pairs of G
to compatible pairs for G − e, (κ, σ) 7→ (κ, σ−e). We have found that
there are two pairs which are mapped to the same thing under this map
for each compatible pair for G/e (of which there are υG/e(λ)) and
moreover, these are the only pairs which are mapped to the same thing.
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Putting it All Together (cont.)

So, we can put some of the compatible pairs for G in 1-to-1
correspondence with the compatible pairs for G − e (of which there are
υG−e(λ)) and have υG/e(λ) compatible pairs left over.

Compatible pairs for G Compatible pairs for G − e

υG/e(λ)

In other words, we have that υG (λ) = υG−e(λ) + υG/e(λ).
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A Negative Number of Colors

Using this information, we can show that (−1)nυG (λ) = χG (−λ).

We have that

(−1)1υ◦(λ) = −λ (1′)

(−1)n+mυGtH(λ) = (−1)nυG (λ) · (−1)mυH(λ) (2′)

And lastly,

(−1)nυG (λ) = (−1)nυG−e(λ) + (−1)nυG/e(λ)

= (−1)nυG−e(λ)− (−1)n−1υG/e(λ) (3′)
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A Negative Number of Colors (cont.)

We know that χG (−λ) is uniquely defined by the following properties

(1) χ◦(−λ) = −λ.

(2) χGtH(−λ) = χG (−λ) · χH(−λ).

(3) χG (−λ) = χG−e(−λ)− χG/e(−λ).

We have shown that (−1)nυG (λ) satisfies each of these properties and so
we have that

(−1)nυG (λ) = χG (−λ)
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QED �

Using this formula, we can note that by plugging in λ = 1 we arrive at

(−1)nυG (1) = χG (−1)

υG (1) is the number of acyclic orientations of G since there is only one
way to color a graph in one color.

And so in conclusion:

The number of acyclic orientations of G = υG (1) = (−1)nχ(−1)
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Example

Consider our favorite graph G :

It has 6 edges and so it has 26 = 64 orientations. There are only two paths
that can be cycles. If one of the two paths is a cycle, then there are
23 = 8 ways to orient the other half. There are two possible cycles and
each cycle can be directed in one of two ways and so (taking into account
the 4 ways in which there can be two cycles) we have that there are
8 · 2 · 2− 4 = 28 orientations of G which are cyclic.

Therefore G has 64− 28 = 36 acyclic orientations.
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Example (cont.)

Recall that the chromatic polynomial for G is
χG (λ) = λ5 − 6λ4 + 13λ3 − 12λ2 + 4λ.

G has 5 vertices and so Stanley’s Acyclicity Theorem tells us that G has
(−1)5χG (−1) = −(−1− 6− 13− 12− 4) = 36 acyclic orientations.
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